
E04 – Minimizing or Maximizing a Function

E04NKF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

Note. This routine uses optional parameters to define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional parameters, you need
only read Section 1 to Section 9 of this document. Refer to the additional Section 10, Section 11 and
Section 12 for a description of the algorithm, the specification of the optional parameters and a description
of the monitoring information produced by the routine.

1 Purpose

E04NKF solves sparse linear programming or quadratic programming problems.

2 Specification

SUBROUTINE E04NKF(N, M, NNZ, IOBJ, NCOLH, QPHX, A, HA, KA, BL, BU,
1 START, NAMES, NNAME, CRNAME, NS, XS, ISTATE,
2 MINIZ, MINZ, NINF, SINF, OBJ, CLAMDA, IZ, LENIZ,
3 Z, LENZ, IFAIL)
INTEGER N, M, NNZ, IOBJ, NCOLH, HA(NNZ), KA(N+1), NNAME,
1 NS, ISTATE(N+M), MINIZ, MINZ, NINF,
2 IZ(LENIZ), LENIZ, LENZ, IFAIL
real A(NNZ), BL(N+M), BU(N+M), XS(N+M), SINF, OBJ,
1 CLAMDA(N+M), Z(LENZ)
CHARACTER∗8 NAMES(5), CRNAME(NNAME)
CHARACTER∗1 START
EXTERNAL QPHX

3 Description

E04NKF is designed to solve a class of quadratic programming problems that are assumed to be stated
in the following general form:

minimize
x∈Rn

f(x) subject to l ≤
{
x
Ax

}
≤ u, (1)

where x is a set of variables, A is an m by n matrix and the objective function f(x) may be specified in a
variety of ways depending upon the particular problem to be solved. The optional parameter Maximize
(see Section 11.2) may be used to specify an alternative problem in which f(x) is maximized. The possible
forms for f(x) are listed in Table 1 below, in which the prefixes FP, LP and QP stand for ‘feasible point’,
‘linear programming’ and ‘quadratic programming’ respectively, c is an n element vector and H is the n
by n second-derivative matrix ∇2f(x) (the Hessian matrix).

Problem type Objective function f(x) Hessian matrix H
FP Not applicable Not applicable
LP cTx Not applicable
QP cTx+ 1

2x
THx Symmetric positive semi-definite

Table 1

For LP and QP problems, the unique global minimum value of f(x) is found. For FP problems, f(x) is
omitted and the routine attempts to find a feasible point for the set of constraints. For QP problems,
you must also provide a subroutine that computes Hx for any given vector x. (H need not be stored
explicitly.)

E04NKF is intended to solve large-scale linear and quadratic programming problems in which the
constraint matrix A is sparse (i.e., when the number of zero elements is sufficiently large that it is
worthwhile using algorithms which avoid computations and storage involving zero elements). The routine

[NP3390/19/pdf] E04NKF.1

E04NKF E04 – Minimizing or Maximizing a Function

also takes advantage of sparsity in c. (Sparsity in H can be exploited in the subroutine that computes
Hx.) For problems in which A can be treated as a dense matrix, it is usually more efficient to use
E04MFF, E04NCF or E04NFF.

If H is positive-definite, then the final x will be unique. If E04NKF detects that H is indefinite, it
terminates immediately with IFAIL = 5 (see Section 6). If H is the zero matrix, the routine will still
solve the resulting LP problem; however, this can be accomplished more efficiently by setting NCOLH =
0 (see Section 5).

The upper and lower bounds on the m elements of Ax are said to define the general constraints of the
problem. Internally, E04NKF converts the general constraints to equalities by introducing a set of slack
variables s, where s = (s1, s2, . . . , sm)T . For example, the linear constraint 5 ≤ 2x1 + 3x2 ≤ +∞ is
replaced by 2x1 + 3x2 − s1 = 0, together with the bounded slack 5 ≤ s1 ≤ +∞. The problem defined by
(1) can therefore be re-written in the following equivalent form:

minimize
x∈Rn,s∈Rm

f(x) subject to Ax− s = 0, l ≤
{
x
s

}
≤ u.

Since the slack variables s are subject to the same upper and lower bounds as the elements of Ax, the
bounds on Ax and x can simply be thought of as bounds on the combined vector (x, s). (In order to
indicate their special role in QP problems, the original variables x are sometimes known as ‘column
variables’, and the slack variables s are known as ‘row variables’.)

Each LP or QP problem is solved using an active-set method. This is an iterative procedure with two
phases: a feasibility phase, in which the sum of infeasibilities is minimized to find a feasible point; and
an optimality phase, in which f(x) is minimized by constructing a sequence of iterations that lies within
the feasible region.

A constraint is said to be active or binding at x if the associated element of either x or Ax is equal to
one of its upper or lower bounds. Since an active constraint in Ax has its associated slack variable at a
bound, the status of both simple and general upper and lower bounds can be conveniently described in
terms of the status of the variables (x, s). A variable is said to be nonbasic if it is temporarily fixed at
its upper or lower bound. It follows that regarding a general constraint as being active is equivalent to
thinking of its associated slack as being nonbasic.

At each iteration of an active-set method, the constraints Ax− s = 0 are (conceptually) partitioned into
the form

BxB + SxS +NxN = 0,

where xN consists of the nonbasic elements of (x, s) and the basis matrix B is square and non-singular.
The elements of xB and xS are called the basic and superbasic variables respectively; with xN they are
a permutation of the elements of x and s. At a QP solution, the basic and superbasic variables will lie
somewhere between their upper or lower bounds, while the nonbasic variables will be equal to one of
their bounds. At each iteration, xS is regarded as a set of independent variables that are free to move
in any desired direction, namely one that will improve the value of the objective function (or sum of
infeasibilities). The basic variables are then adjusted in order to ensure that (x, s) continues to satisfy
Ax − s = 0. The number of superbasic variables (nS say) therefore indicates the number of degrees of
freedom remaining after the constraints have been satisfied. In broad terms, nS is a measure of how
nonlinear the problem is. In particular, nS will always be zero for FP and LP problems.

If it appears that no improvement can be made with the current definition of B, S and N , a nonbasic
variable is selected to be added to S, and the process is repeated with the value of nS increased by one.
At all stages, if a basic or superbasic variable encounters one of its bounds, the variable is made nonbasic
and the value of nS is decreased by one.

Associated with each of the m equality constraints Ax−s = 0 is a dual variable πi. Similarly, each variable
in (x, s) has an associated reduced gradient dj (also known as a reduced cost). The reduced gradients for
the variables x are the quantities g − ATπ, where g is the gradient of the QP objective function; and
the reduced gradients for the slack variables s are the dual variables π. The QP subproblem is optimal
if dj ≥ 0 for all nonbasic variables at their lower bounds, dj ≤ 0 for all nonbasic variables at their
upper bounds and dj = 0 for all superbasic variables. In practice, an approximate QP solution is found
by slightly relaxing these conditions on dj (see the description of the optional parameter Optimality
Tolerance in Section 11.2).

E04NKF.2 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04NKF

The process of computing and comparing reduced gradients is known as pricing (a term first introduced
in the context of the simplex method for linear programming). To ‘price’ a nonbasic variable xj means
that the reduced gradient dj associated with the relevant active upper or lower bound on xj is computed
via the formula dj = gj − aTπ, where aj is the jth column of (A − I). (The variable selected by such
a process and the corresponding value of dj (i.e., its reduced gradient) are the quantities +S and dj in
the monitoring file output; see Section 12.) If A has significantly more columns than rows (i.e., n � m),
pricing can be computationally expensive. In this case, a strategy known as partial pricing can be used
to compute and compare only a subset of the dj ’s.

E04NKF is based on SQOPT, which is part of the SNOPT package described in Gill et al. [1], which in
turn utilizes routines from the MINOS package (see Murtagh and Saunders [2]). It uses stable numerical
methods throughout and includes a reliable basis package (for maintaining sparse LU factors of the basis
matrix B), a practical anti-degeneracy procedure, efficient handling of linear constraints and bounds on
the variables (by an active-set strategy), as well as automatic scaling of the constraints. Further details
can be found in Section 10.

4 References

[1] Gill P E, Murray W and Saunders M A (1996) SNOPT: An SQP Algorithm for Large-
scale Constrained Optimization Numerical Analysis Report 96–2. Department of Mathematics,
University of California, San Diego

[2] Murtagh B A and Saunders M A (1995) MINOS 5.4 User’s Guide Report SOL 83-20R. Department
of Operations Research, Stanford University

[3] Gill P E and Murray W (1978) Numerically stable methods for quadratic programming Math.
Programming 14 349–372

[4] Gill P E, Murray W, Saunders M A and Wright M H (1989) A practical anti-cycling procedure for
linearly constrained optimization Math. Programming 45 437–474

[5] Gill P E, Murray W, Saunders M A and Wright M H (1991) Inertia-controlling methods for general
quadratic programming SIAM Rev. 33 1–36

[6] Gill P E, Murray W, Saunders M A and Wright M H (1987) Maintaining LU factors of a general
sparse matrix Linear Algebra and its Applics. 88/89 239–270

[7] Hall J A J and McKinnon K I M (1996) The Simplest Examples where the Simplex Method
Cycles and Conditions where EXPAND Fails to Prevent Cycling Report MS 96–010. Department
of Mathematics and Statistics, University of Edinburgh

[8] Fourer R (1982) Solving staircase linear programs by the simplex method Math. Programming 23
274–313

5 Parameters

1: N — INTEGER Input

On entry: n, the number of variables (excluding slacks). This is the number of columns in the linear
constraint matrix A.

Constraint: N ≥ 1.

2: M — INTEGER Input

On entry: m, the number of general linear constraints (or slacks). This is the number of rows in A,
including the free row (if any; see IOBJ below).

Constraint: M ≥ 1.

3: NNZ — INTEGER Input

On entry: the number of non-zero elements in A.

Constraint: 1 ≤ NNZ ≤ N × M.

[NP3390/19/pdf] E04NKF.3

E04NKF E04 – Minimizing or Maximizing a Function

4: IOBJ — INTEGER Input

On entry: if IOBJ > 0, row IOBJ of A is a free row containing the non-zero elements of the vector
c appearing in the linear objective term cTx. If IOBJ = 0, there is no free row − i.e., the problem
is either an FP problem (in which case IOBJ must be set to zero), or a QP problem with c = 0.

Constraint: 0 ≤ IOBJ ≤ M.

5: NCOLH — INTEGER Input

On entry: nH , the number of leading non-zero columns of the Hessian matrix H . For FP and LP
problems, NCOLH must be set to zero.

Constraint: 0 ≤ NCOLH ≤ N.

6: QPHX — SUBROUTINE, supplied by the NAG Fortran Library or the user. External Procedure

For QP problems, you must supply a version of QPHX to compute the matrix product Hx. If H
has zero rows and columns, it is most efficient to order the variables x = (y z)T so that

Hx =
(

H1 0
0 0

) (
y
z

)
=

(
H1y
0

)
,

where the nonlinear variables y appear first as shown. For FP and LP problems, QPHX will never
be called by E04NKF and hence QPHX may be the dummy routine E04NKU (NKUE04 in some
implementations: see the Users’ Note for your implementation for details).

Its specification is:

SUBROUTINE QPHX(NSTATE, NCOLH, X, HX)
INTEGER NCOLH, NSTATE
real HX(NCOLH), X(NCOLH)

1: NSTATE — INTEGER Input
On entry: if NSTATE = 1, then E04NKF is calling QPHX for the first time. This parameter
setting allows you to save computation time if certain data must be read or calculated only
once. If NSTATE ≥ 2, then E04NKF is calling QPHX for the last time. This parameter setting
allows you to perform some additional computation on the final solution. In general, the last
call to QPHX is made with NSTATE = 2 + IFAIL (see Section 6). Otherwise, NSTATE = 0.

2: NCOLH — INTEGER Input
On entry: this is the same parameter NCOLH as supplied to E04NKF (see above).

3: X(NCOLH) — real array Input
On entry: the first NCOLH elements of the vector x.

4: HX(NCOLH) — real array Output
On exit: the product Hx.

QPHX must be declared as EXTERNAL in the (sub)program from which E04NKF is called.
Parameters denoted as Input must not be changed by this procedure.

7: A(NNZ) — real array Input

On entry: the non-zero elements of A, ordered by increasing column index. Note that elements with
the same row and column indices are not allowed.

8: HA(NNZ) — INTEGER array Input

On entry: HA(i) must contain the row index of the non-zero element stored in A(i), for i =
1, 2, . . . ,NNZ. Note that the row indices for a column may be supplied in any order.

Constraint: 1 ≤ HA(i) ≤ M, for i = 1, 2, . . . ,NNZ.

E04NKF.4 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04NKF

9: KA(N+1) — INTEGER array Input

On entry: KA(j) must contain the index in A of the start of the jth column, for j = 1, 2, . . . ,N. To
specify the jth column as empty, set KA(j) = KA(j + 1). Note that the first and last elements of
KA must be such that KA(1) = 1 and KA(N+1) = NNZ + 1.

Constraints:

KA(1) = 1,
KA(j) ≥ 1 for j = 2, 3, . . . ,N,
KA(N+1) = NNZ+1,
0 ≤ KA(j + 1) − KA(j) ≤ M for j = 1, 2, . . . ,N.

10: BL(N+M) — real array Input

On entry: l, the lower bounds for all the variables and general constraints, in the following order.
The first N elements of BL must contain the bounds on the variables x, and the next M elements
the bounds for the general linear constraints Ax (or slacks s) and the free row (if any). To specify
a non-existent lower bound (i.e., lj = −∞), set BL(j) ≤ −bigbnd, where bigbnd is the value of the
optional parameter Infinite Bound Size (default value = 1020; see Section 11.2). To specify the jth
constraint as an equality, set BL(j) = BU(j) = β, say, where |β| < bigbnd. Note that the lower
bound corresponding to the free row must be set to −∞ and stored in BL(N+IOBJ).

Constraints:

BL(N+IOBJ) ≤ −bigbnd when IOBJ > 0.
(See also the description for BU below.)

11: BU(N+M) — real array Input

On entry: u, the upper bounds for all the variables and general constraints, in the following order.
The first N elements of BL must contain the bounds on the variables x, and the next M elements
the bounds for the general linear constraints Ax (or slacks s) and the free row (if any). To specify
a non-existent upper bound (i.e., uj = +∞), set BU(j) ≥ bigbnd. Note that the upper bound
corresponding to the free row must be set to +∞ and stored in BU(N+IOBJ).

Constraints:

BU(N+IOBJ) ≥ bigbnd when IOBJ > 0,
BL(j) ≤ BU(j), for j = 1, 2, . . . ,N+M,
|β| < bigbnd when BL(j) = BU(j) = β.

12: START — CHARACTER*1 Input

On entry: indicates how a starting basis is to be obtained as follows.

If START = ’C’, then an internal Crash procedure will be used to choose an initial basis matrix
B.
If START = ’W’, then a basis is already defined in ISTATE (probably from a previous call).

Constraint: START = ’C’ or ’W’.

13: NAMES(5) — CHARACTER*8 Input

On entry: a set of names associated with the so-called MPSX form of the problem as follows:

NAMES(1) must contain the name for the problem (or be blank);
NAMES(2) must contain the name for the free row (or be blank);
NAMES(3) must contain the name for the constraint right-hand side (or be blank);
NAMES(4) must contain the name for the ranges (or be blank);
NAMES(5) must contain the name for the bounds (or be blank).

(These names are used in the monitoring file output; see Section 12.)

[NP3390/19/pdf] E04NKF.5

E04NKF E04 – Minimizing or Maximizing a Function

14: NNAME — INTEGER Input

On entry: the number of column (i.e., variable) and row names supplied in CRNAME as follows.

If NNAME = 1, there are no names. Default names will be used in the printed output.
If NNAME = N+M, all names must be supplied.

Constraint: NNAME = 1 or N+M.

15: CRNAME(NNAME) — CHARACTER*8 array Input

On entry: the optional column and row names, respectively as follows.

If NNAME = 1, CRNAME is not referenced and the printed output will use default names for
the columns and rows.
If NNAME = N+M, the first N elements must contain the names for the columns and the next
M elements must contain the names for the rows. Note that the name for the free row (if any)
must be stored in CRNAME(N+IOBJ).

16: NS — INTEGER Input/Output

On entry: nS , the number of superbasics. For QP problems, NS need not be specified if START =
’C’, but must retain its value from a previous call when START = ’W’. For FP and LP problems,
NS need not be initialized.

On exit: the final number of superbasics. This will be zero for FP and LP problems.

17: XS(N+M) — real array Input/Output

On entry: the initial values of the variables and slacks (x, s). (See the description for ISTATE
below.)

On exit: the final values of the variables and slacks (x, s).

18: ISTATE(N+M) — INTEGER array Input/Output

On entry: if START = ’C’, the first N elements of ISTATE and XS must specify the initial states
and values, respectively, of the variables x. (The slacks s need not be initialized.) An internal Crash
procedure is then used to select an initial basis matrix B. The initial basis matrix will be triangular
(neglecting certain small elements in each column). It is chosen from various rows and columns of
(A − I). Possible values for ISTATE(j) are as follows:

ISTATE(j) State of XS(j) during Crash procedure
0 or 1 Eligible for the basis

2 Ignored
3 Eligible for the basis (given preference over 0 or 1)

4 or 5 Ignored

If nothing special is known about the problem, or there is no wish to provide special information, you
may set ISTATE(j) = 0 and XS(j) =0.0 for j = 1, 2, . . . ,N. All variables will then be eligible for the
initial basis. Less trivially, to say that the jth variable will probably be equal to one of its bounds,
set ISTATE(j) = 4 and XS(j) = BL(j) or ISTATE(j) = 5 and XS(j) = BU(j) as appropriate.

Following the Crash procedure, variables for which ISTATE(j) = 2 are made superbasic. Other
variables not selected for the basis are then made nonbasic at the value XS(j) if BL(j) ≤ XS(j) ≤
BU(j), or at the value BL(j) or BU(j) closest to XS(j).

If START = ’W’, ISTATE and XS must specify the initial states and values, respectively, of the
variables and slacks (x, s). If E04NKF has been called previously with the same values of N and M,
ISTATE already contains satisfactory information.

Constraints:

If START = ’C’, 0 ≤ ISTATE(j) ≤ 5 for j = 1, 2, . . . ,N.
If START = ’W’, 0 ≤ ISTATE(j) ≤ 3 for j = 1, 2, . . . ,N+M.

E04NKF.6 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04NKF

On exit: the final states of the variables and slacks (x, s). The significance of each possible value of
ISTATE(j) is as follows:

ISTATE(j) State of variable j Normal value of XS(j)
0 Nonbasic BL(j)
1 Nonbasic BU(j)
2 Superbasic Between BL(j) and BU(j)
3 Basic Between BL(j) and BU(j)

If NINF = 0, basic and superbasic variables may be outside their bounds by as much as the
value of the optional parameter Feasibility Tolerance (default value =max(10−6,

√
ε), where ε is

the machine precision; see Section 11.2). Note that unless the optional parameter Scale Option
= 0 (default value = 2; see Section 11.2) is specified, the Feasibility Tolerance applies to the variables
of the scaled problem. In this case, the variables of the original problem may be as much as 0.1
outside their bounds, but this is unlikely unless the problem is very badly scaled.

Very occasionally some nonbasic variables may be outside their bounds by as much as the Feasibility
Tolerance, and there may be some nonbasic variables for which XS(j) lies strictly between its bounds.

If NINF > 0, some basic and superbasic variables may be outside their bounds by an arbitrary
amount (bounded by SINF if Scale Option = 0).

19: MINIZ — INTEGER Output

On exit: the minimum value of LENIZ required to start solving the problem. If IFAIL = 12,
E04NKF may be called again with LENIZ suitably larger than MINIZ. (The bigger the better, since
it is not certain how much workspace the basis factors need.)

20: MINZ — INTEGER Output

On exit: the minimum value of LENZ required to start solving the problem. If IFAIL = 13, E04NKF
may be called again with LENZ suitably larger than MINZ. (The bigger the better, since it is not
certain how much workspace the basis factors need.)

21: NINF — INTEGER Output

On exit: the number of infeasibilities. This will be zero if IFAIL = 0 or 1.

22: SINF — real Output

On exit: the sum of infeasibilities. This will be zero if NINF = 0. (Note that E04NKF does not
attempt to compute the minimum value of SINF if IFAIL = 3.)

23: OBJ — real Output

On exit: the value of the objective function. If NINF = 0, OBJ includes the quadratic objective
term 1

2x
THx (if any). If NINF > 0, OBJ is just the linear objective term cTx (if any). For FP

problems, OBJ is set to zero.

24: CLAMDA(N+M) — real array Output

On exit: a set of Lagrange multipliers for the bounds on the variables and the general constraints.
More precisely, the first N elements contain the multipliers (reduced costs) for the bounds on the
variables, and the next M elements contain the multipliers (shadow prices) for the general linear
constraints.

25: IZ(LENIZ) — INTEGER array Workspace
26: LENIZ — INTEGER Input

On entry: the dimension of the array IZ as declared in the (sub)program from which E04NKF is
called.

Constraint: LENIZ ≥ 1.

[NP3390/19/pdf] E04NKF.7

E04NKF E04 – Minimizing or Maximizing a Function

27: Z(LENZ) — real array Workspace
28: LENZ — INTEGER Input

On entry: the dimension of the array Z as declared in the (sub)program from which E04NKF is
called.

Constraint: LENZ ≥ 1.

The amounts of workspace provided (i.e., LENIZ and LENZ) and required (i.e., MINIZ and MINZ)
are (by default) output on the current advisory message unit (as defined by X04ABF). Since the
minimum values of LENIZ and LENZ required to start solving the problem are returned in MINIZ
and MINZ, respectively, you may prefer to obtain appropriate values from the output of a preliminary
run with LENIZ and LENZ set to 1. (E04NKF will then terminate with IFAIL = 12.)

29: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, −1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL �= 0 on exit,
users are recommended to set IFAIL to −1 before entry. It is then essential to test the value of
IFAIL on exit.

E04NKF returns with IFAIL = 0 if the reduced gradient (Norm rg; see Section 8.1) is negligible,
the Lagrange multipliers (Lagr Mult; see Section 8.1) are optimal and x satisfies the constraints to
the accuracy requested by the value of the optional parameter Feasibility Tolerance (default value
= max(10−6,

√
ε), where ε is the machine precision; see Section 11.2).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or −1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings specified by the routine:

IFAIL = 1

Weak solution found. The final x is not unique, although x gives the global minimum value of the
objective function.

IFAIL = 2

The problem is unbounded (or badly scaled). The objective function is not bounded below in the
feasible region.

IFAIL = 3

The problem is infeasible. The general constraints cannot all be satisfied simultaneously to within
the value of the optional parameter Feasibility Tolerance (default value = max(10−6,

√
ε), where ε

is the machine precision; see Section 11.2).

IFAIL = 4

Too many iterations. The value of the optional parameter Iteration Limit (default value =
max(50, 5(n+m)); see Section 11.2) is too small.

IFAIL = 5

The reduced Hessian matrix ZTHZ (see Section 10.2) exceeds its assigned dimension. The value
of the optional parameter Superbasics Limit (default value = min(nH + 1, n); see Section 11.2) is
too small.

IFAIL = 6

The Hessian matrix H appears to be indefinite. Check that subroutine QPHX has been coded
correctly and that all relevant elements of Hx have been assigned their correct values.

E04NKF.8 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04NKF

IFAIL = 7

An input parameter is invalid.

IFAIL = 8

Numerical error in trying to satisfy the general constraints. The basis is very ill-conditioned.

IFAIL = 9

Not enough integer workspace for the basis factors. Increase LENIZ and rerun E04NKF.

IFAIL = 10

Not enough real workspace for the basis factors. Increase LENZ and rerun E04NKF.

IFAIL = 11

The basis is singular after 15 attempts to factorize it (adding slacks where necessary). Either the
problem is badly scaled or the value of the optional parameter LU Factor Tolerance (default value
= 100.0; see Section 11.2) is too large.

IFAIL = 12

Not enough integer workspace to start solving the problem. Increase LENIZ to at least MINIZ
and rerun E04NKF.

IFAIL = 13

Not enough real workspace to start solving the problem. Increase LENZ to at least MINZ and
rerun E04NKF.

7 Accuracy

The routine implements a numerically stable active-set strategy and returns solutions that are as accurate
as the condition of the problem warrants on the machine.

8 Further Comments

This section contains a description of the printed output.

8.1 Description of the Printed Output

This section describes the (default) intermediate printout and final printout produced by E04NKF. The
intermediate printout is a subset of the monitoring information produced by the routine at every iteration
(see Section 12). The level of printed output can be controlled by the user (see the description of the
optional parameter Print Level in Section 11.2). Note that the intermediate printout and final printout
are produced only if Print Level ≥ 10 (the default).

The following line of summary output (< 80 characters) is produced at every iteration. In all cases, the
values of the quantities printed are those in effect on completion of the given iteration.

Itn is the iteration count.
Step is the step taken along the computed search direction.
Ninf is the number of violated constraints (infeasibilities). This will be zero during the

optimality phase.
Sinf/Objective is the value of the current objective function. If x is not feasible, Sinf gives

the sum of the magnitudes of constraint violations. If x is feasible, Objective is
the value of the objective function. The output line for the final iteration of the
feasibility phase (i.e., the first iteration for which Ninf is zero) will give the value
of the true objective at the first feasible point. During the optimality phase, the
value of the objective function will be non-increasing. During the feasibility phase,
the number of constraint infeasibilities will not increase until either a feasible point
is found, or the optimality of the multipliers implies that no feasible point exists.

[NP3390/19/pdf] E04NKF.9

E04NKF E04 – Minimizing or Maximizing a Function

Norm rg is ‖dS‖, the Euclidean norm of the reduced gradient (see Section 10.3). During
the optimality phase, this norm will be approximately zero after a unit step. For
FP and LP problems, Norm rg is not printed.

The final printout includes a listing of the status of every variable and constraint.

The following describes the printout for each variable. A full stop (.) is printed for any numerical value
that is zero.

Variable gives the name of the variable. If NNAME = 1, a default name is assigned to
the jth variable for j = 1, 2, . . . , n. If NNAME = N + M, the name supplied in
CRNAME(j) is assigned to the jth variable.

State gives the state of the variable (LL if nonbasic on its lower bound, UL if nonbasic
on its upper bound, EQ if nonbasic and fixed, FR if nonbasic and strictly between
its bounds, BS if basic and SBS if superbasic).

A key is sometimes printed before State to give some additional information about
the state of a variable. Note that unless the optional parameter Scale Option = 0
(default value = 2; see Section 11.2) is specified, the tests for assigning a key are
applied to the variables of the scaled problem.

A Alternative optimum possible. The variable is nonbasic, but its reduced
gradient is essentially zero. This means that if the variable were allowed to
start moving away from its bound, there would be no change in the value of
the objective function. The values of the other free variables might change,
giving a genuine alternative solution. However, if there are any degenerate
variables (labelled D), the actual change might prove to be zero, since one
of them could encounter a bound immediately. In either case, the values
of the Lagrange multipliers might also change.

D Degenerate. The variable is basic or superbasic, but it is equal to (or very
close to) one of its bounds.

I Infeasible. The variable is basic or superbasic and is currently violating one
of its bounds by more than the value of the optional parameter Feasibility
Tolerance (default value = max(10−6,

√
ε), where ε is the machine

precision; see Section 11.2).
N Not precisely optimal. The variable is nonbasic or superbasic. If the

value of the reduced gradient for the variable exceeds the value of the
optional parameter Optimality Tolerance (default value = max(10−6,

√
ε);

see Section 11.2), the solution would not be declared optimal because the
reduced gradient for the variable would not be considered negligible.

Value is the value of the variable at the final iterate.
Lower Bound is the lower bound specified for the variable. None indicates that BL(j) ≤−bigbnd.
Upper Bound is the upper bound specified for the variable. None indicates that BU(j) ≥ bigbnd.
Lagr Mult is the Lagrangemultiplier for the associated bound. This will be zero if State is FR.

If x is optimal, the multiplier should be non-negative if State is LL, non-positive
if State is UL, and zero if State is BS or SBS.

Residual is the difference between the variable Value and the nearer of its (finite) bounds
BL(j) and BU(j). A blank entry indicates that the associated variable is not
bounded (i.e., BL(j) ≤−bigbnd and BU(j) ≥bigbnd).

The meaning of the printout for linear constraints is the same as that given above for variables, with
‘variable’ replaced by ‘constraint’, n replaced by m, CRNAME(j) replaced by CRNAME(n + j), BL(j)
and BU(j) are replaced by BL(n+ j) and BU(n + j) respectively, and with the following change in the
heading:

Constrnt gives the name of the linear constraint.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can be
interpreted as allowing the entry in the Residual column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

E04NKF.10 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04NKF

9 Example

To minimize the quadratic function f(x) = cTx+ 1
2x

THx, where

c = (−200.0, −2000.0, −2000.0, −2000.0, −2000.0, 400.0, 400.0)T

H =




2 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 2 0 0 0
0 0 2 2 0 0 0
0 0 0 0 2 0 0
0 0 0 0 0 2 2
0 0 0 0 0 2 2




subject to the bounds
0 ≤ x1 ≤ 200
0 ≤ x2 ≤ 2500

400 ≤ x3 ≤ 800
100 ≤ x4 ≤ 700

0 ≤ x5 ≤ 1500
0 ≤ x6

0 ≤ x7

and to the linear constraints

x1 + x2 + x3 + x4 + x5 + x6 + x7 = 2000
0.15x1 + 0.04x2 + 0.02x3 + 0.04x4 + 0.02x5 + 0.01x6 + 0.03x7 ≤ 60
0.03x1 + 0.05x2 + 0.08x3 + 0.02x4 + 0.06x5 + 0.01x6 ≤ 100
0.02x1 + 0.04x2 + 0.01x3 + 0.02x4 + 0.02x5 ≤ 40
0.02x1 + 0.03x2 + 0.01x5 ≤ 30

1500 ≤ 0.70x1 + 0.75x2 + 0.80x3 + 0.75x4 + 0.80x5 + 0.97x6

250 ≤ 0.02x1 + 0.06x2 + 0.08x3 + 0.12x4 + 0.02x5 + 0.01x6 + 0.97x7 ≤ 300

The initial point, which is infeasible, is

x0 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)T .

The optimal solution (to five figures) is

x∗ = (0.0, 349.40, 648.85, 172.85, 407.52, 271.36, 150.02)T .

One bound constraint and four linear constraints are active at the solution. Note that the Hessian matrix
H is positive semi-definite.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* E04NKF Example Program Text.
* Mark 19 Revised. NAG Copyright 1999.
* .. Parameters ..

INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER IDUMMY
PARAMETER (IDUMMY=-11111)
INTEGER NMAX, MMAX, NNZMAX, LENIZ, LENZ
PARAMETER (NMAX=100,MMAX=100,NNZMAX=100,LENIZ=10000,

+ LENZ=10000)
* .. Local Scalars ..

real OBJ, SINF
INTEGER I, ICOL, IFAIL, IOBJ, J, JCOL, M, MINIZ,

[NP3390/19/pdf] E04NKF.11

E04NKF E04 – Minimizing or Maximizing a Function

+ MINZ, N, NCOLH, NINF, NNAME, NNZ, NS
CHARACTER START

* .. Local Arrays ..
real A(NNZMAX), BL(NMAX+MMAX), BU(NMAX+MMAX),

+ CLAMDA(NMAX+MMAX), XS(NMAX+MMAX), Z(LENZ)
INTEGER HA(NNZMAX), ISTATE(NMAX+MMAX), IZ(LENIZ),

+ KA(NMAX+1)
CHARACTER*8 CRNAME(NMAX+MMAX), NAMES(5)

* .. External Subroutines ..
EXTERNAL E04NKF, QPHX

* .. Executable Statements ..
WRITE (NOUT,*) ’E04NKF Example Program Results’

* Skip heading in data file.
READ (NIN,*)
READ (NIN,*) N, M
IF (N.LE.NMAX .AND. M.LE.MMAX) THEN

*
* Read NNZ, IOBJ, NCOLH, START and NNAME from data file.
*

READ (NIN,*) NNZ, IOBJ, NCOLH, START, NNAME
*
* Read NAMES and CRNAME from data file.
*

READ (NIN,*) (NAMES(I),I=1,5)
READ (NIN,*) (CRNAME(I),I=1,NNAME)

*
* Read the matrix A from data file. Set up KA.
*

JCOL = 1
KA(JCOL) = 1
DO 40 I = 1, NNZ

*
* Element (HA(I), ICOL) is stored in A(I).
*

READ (NIN,*) A(I), HA(I), ICOL
*

IF (ICOL.LT.JCOL) THEN
*
* Elements not ordered by increasing column index.
*

WRITE (NOUT,99999) ’Element in column’, ICOL,
+ ’ found after element in column’, JCOL, ’. Problem’,
+ ’ abandoned.’

STOP
ELSE IF (ICOL.EQ.JCOL+1) THEN

*
* Index in A of the start of the ICOL-th column equals I.
*

KA(ICOL) = I
JCOL = ICOL

ELSE IF (ICOL.GT.JCOL+1) THEN
*
* Index in A of the start of the ICOL-th column equals I,
* but columns JCOL+1,JCOL+2,...,ICOL-1 are empty. Set the
* corresponding elements of KA to I.
*

DO 20 J = JCOL + 1, ICOL - 1
KA(J) = I

E04NKF.12 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04NKF

20 CONTINUE
KA(ICOL) = I
JCOL = ICOL

END IF
40 CONTINUE

*
KA(N+1) = NNZ + 1

*
IF (N.GT.ICOL) THEN

*
* Columns N,N-1,...,ICOL+1 are empty. Set the corresponding
* elements of KA accordingly.
*

DO 60 I = N, ICOL + 1, -1
IF (KA(I).EQ.IDUMMY) KA(I) = KA(I+1)

60 CONTINUE
END IF

*
* Read BL, BU, ISTATE and XS from data file.
*

READ (NIN,*) (BL(I),I=1,N+M)
READ (NIN,*) (BU(I),I=1,N+M)
IF (START.EQ.’C’) THEN

READ (NIN,*) (ISTATE(I),I=1,N)
ELSE IF (START.EQ.’W’) THEN

READ (NIN,*) (ISTATE(I),I=1,N+M)
END IF
READ (NIN,*) (XS(I),I=1,N)

*
* Solve the QP problem.
*

IFAIL = -1
*

CALL E04NKF(N,M,NNZ,IOBJ,NCOLH,QPHX,A,HA,KA,BL,BU,START,NAMES,
+ NNAME,CRNAME,NS,XS,ISTATE,MINIZ,MINZ,NINF,SINF,OBJ,
+ CLAMDA,IZ,LENIZ,Z,LENZ,IFAIL)

*
END IF
STOP

*
99999 FORMAT (/1X,A,I5,A,I5,A,A)

END
*

SUBROUTINE QPHX(NSTATE,NCOLH,X,HX)
*
* Routine to compute H*x. (In this version of QPHX, the Hessian
* matrix H is not referenced explicitly.)
*
* .. Parameters ..

real TWO
PARAMETER (TWO=2.0e+0)

* .. Scalar Arguments ..
INTEGER NCOLH, NSTATE

* .. Array Arguments ..
real HX(NCOLH), X(NCOLH)

* .. Executable Statements ..
*

HX(1) = TWO*X(1)

[NP3390/19/pdf] E04NKF.13

E04NKF E04 – Minimizing or Maximizing a Function

HX(2) = TWO*X(2)
HX(3) = TWO*(X(3)+X(4))
HX(4) = HX(3)
HX(5) = TWO*X(5)
HX(6) = TWO*(X(6)+X(7))
HX(7) = HX(6)

*
RETURN
END

9.2 Program Data

E04NKF Example Program Data
7 8 :Values of N and M
48 8 7 ’C’ 15 :Values of NNZ, IOBJ, NCOLH, START and NNAME
’ ’ ’ ’ ’ ’ ’ ’ ’ ’ :End of NAMES
’...X1...’ ’...X2...’ ’...X3...’ ’...X4...’ ’...X5...’
’...X6...’ ’...X7...’ ’..ROW1..’ ’..ROW2..’ ’..ROW3..’
’..ROW4..’ ’..ROW5..’ ’..ROW6..’ ’..ROW7..’ ’..COST..’ :End of CRNAME

0.02 7 1
0.02 5 1
0.03 3 1
1.00 1 1
0.70 6 1
0.02 4 1
0.15 2 1

-200.00 8 1
0.06 7 2
0.75 6 2
0.03 5 2
0.04 4 2
0.05 3 2
0.04 2 2
1.00 1 2

-2000.00 8 2
0.02 2 3
1.00 1 3
0.01 4 3
0.08 3 3
0.08 7 3
0.80 6 3

-2000.00 8 3
1.00 1 4
0.12 7 4
0.02 3 4
0.02 4 4
0.75 6 4
0.04 2 4

-2000.00 8 4
0.01 5 5
0.80 6 5
0.02 7 5
1.00 1 5
0.02 2 5
0.06 3 5
0.02 4 5

-2000.00 8 5
1.00 1 6

E04NKF.14 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04NKF

0.01 2 6
0.01 3 6
0.97 6 6
0.01 7 6

400.00 8 6
0.97 7 7
0.03 2 7
1.00 1 7

400.00 8 7 :End of matrix A
0.0 0.0 4.0E+02 1.0E+02 0.0 0.0 0.0 2.0E+03
-1.0E+25 -1.0E+25 -1.0E+25 -1.0E+25 1.5E+03 2.5E+02 -1.0E+25 :End of BL
2.0E+02 2.5E+03 8.0E+02 7.0E+02 1.5E+03 1.0E+25 1.0E+25 2.0E+03
6.0E+01 1.0E+02 4.0E+01 3.0E+01 1.0E+25 3.0E+02 1.0E+25 :End of BU
0 0 0 0 0 0 0 0 :End of ISTATE
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 :End of XS

9.3 Program Results

E04NKF Example Program Results

*** E04NKF
*** Start of NAG Library implementation details ***

Implementation title: Generalised Base Version
Precision: FORTRAN double precision

Product Code: FLBAS18D
Mark: 18A

*** End of NAG Library implementation details ***

Parameters

Frequencies.
Check frequency......... 60 Expand frequency........ 10000
Factorization frequency. 100

LP Parameters.
Scale tolerance......... 9.00E-01 Feasibility tolerance... 1.00E-06
Iteration limit......... 75 Scale option............ 2
Optimality tolerance.... 1.00E-06 Partial price........... 10
Crash tolerance......... 1.00E-01 Pivot tolerance......... 2.04E-11
Crash option............ 2

QP objective.
Objective variables..... 7 Hessian columns......... 7
Superbasics limit....... 7

Miscellaneous.
Variables............... 7 Linear constraints...... 8
LU factor tolerance..... 1.00E+02 LU update tolerance..... 1.00E+01
LU singularity tolerance 2.04E-11 Monitoring file......... -1
EPS (machine precision). 1.11E-16 Print level............. 10
Infinite bound size..... 1.00E+20 Infinite step size...... 1.00E+20
COLD start.............. MINIMIZE................

[NP3390/19/pdf] E04NKF.15

E04NKF E04 – Minimizing or Maximizing a Function

Workspace provided is IZ(10000), Z(10000).
To start solving the problem we need IZ(428), Z(358).

Itn Step Ninf Sinf/Objective Norm rg
Itn 0 -- Infeasible.

0 0.0E+00 1 1.152891E+03 0.0E+00
1 4.3E+02 0 0.000000E+00 0.0E+00

Itn 1 -- Feasible point found (for 1 equality constraints).
1 0.0E+00 0 0.000000E+00 0.0E+00
1 0.0E+00 0 1.460000E+06 0.0E+00

Itn 1 -- Feasible QP solution.
2 8.7E-02 0 9.409959E+05 0.0E+00
3 5.3E-01 0 -1.056552E+06 0.0E+00
4 1.0E+00 0 -1.462190E+06 2.3E-12
5 1.0E+00 0 -1.698092E+06 2.2E-12
6 4.6E-02 0 -1.764906E+06 7.0E+02
7 1.0E+00 0 -1.811946E+06 2.8E-12
8 1.7E-02 0 -1.847325E+06 1.7E+02
9 1.0E+00 0 -1.847785E+06 7.0E-12

Variable State Value Lower Bound Upper Bound Lagr Mult Residual

...X1... LL 0.000000E+00 . 200.00 2361. .

...X2... BS 349.399 . 2500.0 -3.6566E-12 349.4

...X3... SBS 648.853 400.00 800.00 -5.9240E-12 151.1

...X4... SBS 172.847 100.00 700.00 1.9491E-12 72.85

...X5... BS 407.521 . 1500.0 . 407.5

...X6... BS 271.356 . None -3.2802E-12 271.4

...X7... BS 150.023 . None -1.4130E-12 150.0

Constrnt State Value Lower Bound Upper Bound Lagr Mult Residual

..ROW1.. EQ 2000.00 2000.0 2000.0 -1.2901E+04 .

..ROW2.. BS 49.2316 None 60.000 . -10.77

..ROW3.. UL 100.000 None 100.00 -2325. .

..ROW4.. BS 32.0719 None 40.000 . -7.928

..ROW5.. BS 14.5572 None 30.000 . -15.44

..ROW6.. LL 1500.00 1500.0 None 1.4455E+04 .

..ROW7.. LL 250.000 250.00 300.00 1.4581E+04 .

..COST.. BS -2.988690E+06 None None -1.000 -2.9887E+06

Exit E04NKF - Optimal QP solution found.

Final QP objective value = -1847785.

Exit from QP problem after 9 iterations.

The remainder of this document is intended for more advanced users. Section 10 contains a detailed
algorithm description that may be needed in order to understand Section 11 and Section 12. Section
11 describes the optional parameters that may be set by calls to E04NLF and/or E04NMF. Section 12
describes the quantities that can be requested to monitor the course of the computation.

E04NKF.16 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04NKF

10 Algorithmic Details

This section contains a description of the method used by E04NKF.

10.1 Overview

E04NKF is based on an inertia-controlling method that maintains a Cholesky factorization of the reduced
Hessian (see below). The method is similar to that of Gill and Murray [3], and is described in detail
by Gill et al. [5]. Here we briefly summarize the main features of the method. Where possible, explicit
reference is made to the names of variables that are parameters of the routine or appear in the printed
output.

The method used has two distinct phases: finding an initial feasible point by minimizing the sum of
infeasibilities (the feasibility phase), and minimizing the quadratic objective function within the feasible
region (the optimality phase). The computations in both phases are performed by the same subroutines.
The two-phase nature of the algorithm is reflected by changing the function being minimized from the
sum of infeasibilities (the printed quantity Sinf; see Section 12) to the quadratic objective function (the
printed quantity Objective; see Section 12).

In general, an iterative process is required to solve a quadratic program. Given an iterate (x, s) in both
the original variables x and the slack variables s, a new iterate (x̄, s̄) is defined by(

x̄
s̄

)
=

(
x
s

)
+ αp, (2)

where the step length α is a non-negative scalar (the printed quantity Step; see Section 12), and p is
called the search direction. (For simplicity, we shall consider a typical iteration and avoid reference to the
index of the iteration.) Once an iterate is feasible (i.e., satisfies the constraints), all subsequent iterates
remain feasible.

10.2 Definition of the Working Set and Search Direction

At each iterate (x, s), a working set of constraints is defined to be a linearly independent subset of the
constraints that are satisfied ‘exactly’ (to within the value of the optional parameter Feasibility Tolerance;
see Section 11.2). The working set is the current prediction of the constraints that hold with equality
at a solution of the LP or QP problem. Let mW denote the number of constraints in the working set
(including bounds), and let W denote the associated mW by (n + m) working set matrix consisting of
the mW gradients of the working set constraints.

The search direction is defined so that constraints in the working set remain unaltered for any value of
the step length. It follows that p must satisfy the identity

Wp = 0. (3)

This characterization allows p to be computed using any n by nZ full-rank matrix Z that spans the null
space of W . (Thus, nZ = n−mW and WZ = 0.) The null space matrix Z is defined from a sparse LU
factorization of part of W (see (6) and (7) below). The direction p will satisfy (3) if

p = ZpZ, (4)

where pZ is any nZ -vector.

The working set contains the constraints Ax− s = 0 and a subset of the upper and lower bounds on the
variables (x, s). Since the gradient of a bound constraint xj ≥ lj or xj ≤ uj is a vector of all zeros except
for ±1 in position j, it follows that the working set matrix contains the rows of (A − I) and the unit
rows associated with the upper and lower bounds in the working set.

The working set matrix W can be represented in terms of a certain column partition of the matrix (A −I).
As in Section 3 we partition the constraints Ax− s = 0 so that

BxB + SxS +NxN = 0, (5)

where B is a square non-singular basis and xB, xS and xN are the basic, superbasic and nonbasic variables
respectively. The nonbasic variables are equal to their upper or lower bounds at (x, s), and the superbasic

[NP3390/19/pdf] E04NKF.17

E04NKF E04 – Minimizing or Maximizing a Function

variables are independent variables that are chosen to improve the value of the current objective function.
The number of superbasic variables is nS (the printed quantity Ns; see Section 12). Given values of xN

and xS , the basic variables xB are adjusted so that (x, s) satisfies (5).

If P is a permutation matrix such that (A − I)P = (B S N), then the working set matrix W satisfies

WP =
(

B S N
0 0 IN

)
, (6)

where IN is the identity matrix with the same number of columns as N .

The null space matrix Z is defined from a sparse LU factorization of part of W . In particular, Z is
maintained in ‘reduced gradient’ form, using the LUSOL package (see Gill et al. [6]) to maintain sparse
LU factors of the basis matrix B that alters as the working set W changes. Given the permutation P ,
the null space basis is given by

Z = P


 −B−1S

I
0


 . (7)

This matrix is used only as an operator, i.e., it is never computed explicitly. Products of the form Zv
and ZT g are obtained by solving with B or BT . This choice of Z implies that nZ , the number of ‘degrees
of freedom’ at (x, s), is the same as nS , the number of superbasic variables.

Let gZ and HZ denote the reduced gradient and reduced Hessian of the objective function:

gZ = ZT g and HZ = ZTHZ, (8)

where g is the objective gradient at (x, s). Roughly speaking, gZ and HZ describe the first and
second derivatives of an nS-dimensional unconstrained problem for the calculation of pZ . (The condition
estimator of HZ is the quantity Cond Hz in the monitoring file output; see Section 12.)

At each iteration, an upper triangular factorR is available such thatHZ = RTR. Normally,R is computed
from RTR = ZTHZ at the start of the optimality phase and then updated as the QP working set changes.
For efficiency, the dimension of R should not be excessive (say, nS ≤ 1000). This is guaranteed if the
number of nonlinear variables is ‘moderate’.

If the QP problem contains linear variables, H is positive semi-definite and R may be singular with at
least one zero diagonal element. However, an inertia-controlling strategy is used to ensure that only the
last diagonal element of R can be zero. (See Gill et al. [5] for a discussion of a similar strategy for
indefinite quadratic programming.)

If the initial R is singular, enough variables are fixed at their current value to give a non-singular R. This
is equivalent to including temporary bound constraints in the working set. Thereafter, R can become
singular only when a constraint is deleted from the working set (in which case no further constraints are
deleted until R becomes non-singular).

10.3 The Main Iteration

If the reduced gradient is zero, (x, s) is a constrained stationary point on the working set. During the
feasibility phase, the reduced gradient will usually be zero only at a vertex (although it may be zero
elsewhere in the presence of constraint dependencies). During the optimality phase, a zero reduced
gradient implies that x minimizes the quadratic objective function when the constraints in the working
set are treated as equalities. At a constrained stationary point, Lagrange multipliers λ are defined from
the equations

WTλ = g(x). (9)

A Lagrange multiplier λj corresponding to an inequality constraint in the working set is said to be optimal
if λj ≤ σ when the associated constraint is at its upper bound, or if λj ≥ −σ when the associated constraint
is at its lower bound, where σ depends on the value of the optional parameter Optimality Tolerance (see
Section 11.2). If a multiplier is non-optimal, the objective function (either the true objective or the
sum of infeasibilities) can be reduced by continuing the minimization with the corresponding constraint
excluded from the working set. (This step is sometimes referred to as ‘deleting’ a constraint from the
working set.) If optimal multipliers occur during the feasibility phase but the sum of infeasibilities is
non-zero, there is no feasible point and the routine terminates immediately with IFAIL = 3 (see Section
6).

E04NKF.18 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04NKF

The special form (6) of the working set allows the multiplier vector λ, the solution of (9), to be written
in terms of the vector

d =
(

g
0

)
− (A − I)Tπ =

(
g −ATπ

π

)
, (10)

where π satisfies the equations BTπ = gB, and gB denotes the basic elements of g. The elements of
π are the Lagrange multipliers λj associated with the equality constraints Ax − s = 0. The vector dN

of nonbasic elements of d consists of the Lagrange multipliers λj associated with the upper and lower
bound constraints in the working set. The vector dS of superbasic elements of d is the reduced gradient
gZ in (8). The vector dB of basic elements of d is zero, by construction. (The Euclidean norm of dS and
the final values of dS , g and π are the quantities Norm rg, Reduced Gradnt, Obj Gradient and Dual
Activity in the monitoring file output; see Section 12.)

If the reduced gradient is not zero, Lagrange multipliers need not be computed and the search direction
is given by p = ZpZ (see (7) and (11)). The step length is chosen to maintain feasibility with respect to
the satisfied constraints.

There are two possible choices for pZ , depending on whether or not HZ is singular. If HZ is non-singular,
R is non-singular and pZ in (4) is computed from the equations

RTRpZ = −gZ , (11)

where gZ is the reduced gradient at x. In this case, (x, s) + p is the minimizer of the objective function
subject to the working set constraints being treated as equalities. If (x, s)+p is feasible, α is defined to be
unity. In this case, the reduced gradient at (x̄, s̄) will be zero, and Lagrange multipliers are computed at
the next iteration. Otherwise, α is set to αM, the step to the ‘nearest’ constraint along p. This constraint
is added to the working set at the next iteration.

If HZ is singular, then R must also be singular, and an inertia-controlling strategy is used to ensure that
only the last diagonal element of R is zero. (See Gill et al. [5] for a discussion of a similar strategy for
indefinite quadratic programming.) In this case, pZ satisfies

pT
ZHZpZ = 0 and gT

ZpZ ≤ 0, (12)

which allows the objective function to be reduced by any step of the form (x, s) + αp, where α > 0. The
vector p = ZpZ is a direction of unbounded descent for the QP problem in the sense that the QP objective
is linear and decreases without bound along p. If no finite step of the form (x, s) + αp (where α > 0)
reaches a constraint not in the working set, the QP problem is unbounded and the routine terminates
immediately with IFAIL = 2 (see Section 6). Otherwise, α is defined as the maximum feasible step along
p and a constraint active at (x, s) + αp is added to the working set for the next iteration.

10.4 Miscellaneous

If the basis matrix is not chosen carefully, the condition of the null space matrix Z in (7) could be
arbitrarily high. To guard against this, the routine implements a ‘basis repair’ feature in which the
LUSOL package (see Gill et al. [6]) is used to compute the rectangular factorization

(B S)T = LU, (13)

returning just the permutation P that makes PLPT unit lower triangular. The pivot tolerance is set to
require |PLPT |ij ≤ 2, and the permutation is used to define P in (6). It can be shown that ‖Z‖ is likely
to be little more than unity. Hence, Z should be well-conditioned regardless of the condition of W . This
feature is applied at the beginning of the optimality phase if a potential B − S ordering is known.

The EXPAND procedure (see Gill et al. [4]) is used to reduce the possibility of cycling at a point where
the active constraints are nearly linearly dependent. Although there is no absolute guarantee that cycling
will not occur, the probability of cycling is extremely small (see Hall and McKinnon [7]). The main feature
of EXPAND is that the feasibility tolerance is increased at the start of every iteration. This allows a
positive step to be taken at every iteration, perhaps at the expense of violating the bounds on (x, s) by
a small amount.

Suppose that the value of the optional parameter Feasibility Tolerance (see Section 11.2) is δ. Over a
period of K iterations (where K is the value of the optional parameter Expand Frequency; see Section

[NP3390/19/pdf] E04NKF.19

E04NKF E04 – Minimizing or Maximizing a Function

11.2), the feasibility tolerance actually used by E04NKF (i.e., the working feasibility tolerance) increases
from 0.5δ to δ (in steps of 0.5δ/K).

At certain stages the following ‘resetting procedure’ is used to remove small constraint infeasibilities.
First, all nonbasic variables are moved exactly onto their bounds. A count is kept of the number of
non-trivial adjustments made. If the count is non-zero, the basic variables are recomputed. Finally, the
working feasibility tolerance is reinitialized to 0.5δ.

If a problem requires more than K iterations, the resetting procedure is invoked and a new cycle of
iterations is started. (The decision to resume the feasibility phase or optimality phase is based on
comparing any constraint infeasibilities with δ.)

The resetting procedure is also invoked when E04NKF reaches an apparently optimal, infeasible or
unbounded solution, unless this situation has already occurred twice. If any non-trivial adjustments are
made, iterations are continued.

The EXPAND procedure not only allows a positive step to be taken at every iteration, but also provides
a potential choice of constraints to be added to the working set. All constraints at a distance α (where
α ≤ αM) along p from the current point are then viewed as acceptable candidates for inclusion in the
working set. The constraint whose normal makes the largest angle with the search direction is added to
the working set. This strategy helps keep the basis matrix B well-conditioned.

11 Optional Parameters

Several optional parameters in E04NKF define choices in the problem specification or the algorithm
logic. In order to reduce the number of formal parameters of E04NKF these optional parameters have
associated default values that are appropriate for most problems. Therefore, the user need only specify
those optional parameters whose values are to be different from their default values.

The remainder of this section can be skipped by users who wish to use the default values for all optional
parameters. A complete list of optional parameters and their default values is given in Section 11.1.

Optional parameters may be specified by calling one, or both, of the routines E04NLF and E04NMF
prior to a call to E04NKF.

E04NLF reads options from an external options file, with Begin and End as the first and last lines
respectively and each intermediate line defining a single optional parameter. For example,

Begin
Print Level = 5

End

The call

CALL E04NLF (IOPTNS, INFORM)

can then be used to read the file on unit IOPTNS. INFORM will be zero on successful exit. E04NLF
should be consulted for a full description of this method of supplying optional parameters.

E04NMF can be called to supply options directly, one call being necessary for each optional parameter.
For example,

CALL E04NMF (’Print Level = 5’)

E04NMF should be consulted for a full description of this method of supplying optional parameters.

All optional parameters not specified by the user are set to their default values. Optional parameters
specified by the user are unaltered by E04NKF (unless they define invalid values) and so remain in effect
for subsequent calls unless altered by the user.

11.1 Optional Parameter Checklist and Default Values

For easy reference, the following list shows all the valid keywords and their default values. The symbol ε
represents the machine precision (see X02AJF).

E04NKF.20 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04NKF

Optional Parameters Default Values

Check frequency 60
Crash option 2
Crash tolerance 0.1
Defaults
Expand frequency 10000
Factorization frequency 100
Feasibility tolerance max(10−6,

√
ε)

Infinite bound size 1020

Infinite step size max(bigbnd, 1020)
Iteration limit max(50, 5(n+m))
List/Nolist List
LU factor tolerance 100.0
LU singularity tolerance ε0.67

LU update tolerance 10.0
Maximize/Minimize Minimize
Monitoring file −1
Optimality tolerance max(10−6,

√
ε)

Partial price 10
Pivot tolerance ε0.67

Print level 10
Scale option 2
Scale tolerance 0.9
Superbasics limit min(nH + 1, n)
Rank tolerance 100ε

11.2 Description of the Optional Parameters

The following list (in alphabetical order) gives the valid options. For each option, we give the keyword,
any essential optional qualifiers, the default value, and the definition. The minimum abbreviation of
each keyword is underlined. If no characters of an optional qualifier are underlined, the qualifier may
be omitted. The letters i and r denote INTEGER and real values required with certain options. The
default value of an option is used whenever the condition |i| ≥ 100000000 is satisfied. The number ε is a
generic notation for machine precision (see X02AJF).

Check Frequency i Default = 60

Every ith iteration after the most recent basis factorization, a numerical test is made to see if the current
solution (x, s) satisfies the linear constraints Ax − s = 0. If the largest element of the residual vector
r = Ax− s is judged to be too large, the current basis is refactorized and the basic variables recomputed
to satisfy the constraints more accurately. If i < 0, the default value is used. If i = 0, the value i =
99999999 is used and effectively no checks are made.

Crash Option i Default = 2

Note that this option does not apply when START = ’W’ (see Section 5).

If START = ’C’, an internal Crash procedure is used to select an initial basis from various rows and
columns of the constraint matrix (A −I). The value of i determines which rows and columns are initially
eligible for the basis, and how many times the Crash procedure is called. If i = 0, the all-slack basis
B = −I is chosen. If i = 1, the Crash procedure is called once (looking for a triangular basis in all rows
and columns of the linear constraint matrix A). If i = 2, the Crash procedure is called twice (looking at
any equality constraints first followed by any inequality constraints). If i < 0 or i > 2, the default value
is used.

If i = 1 or 2, certain slacks on inequality rows are selected for the basis first. (If i = 2, numerical values
are used to exclude slacks that are close to a bound.) The Crash procedure then makes several passes
through the columns of A, searching for a basis matrix that is essentially triangular. A column is assigned
to ‘pivot’ on a particular row if the column contains a suitably large element in a row that has not yet
been assigned. (The pivot elements ultimately form the diagonals of the triangular basis.) For remaining
unassigned rows, slack variables are inserted to complete the basis.

[NP3390/19/pdf] E04NKF.21

E04NKF E04 – Minimizing or Maximizing a Function

Crash Tolerance r Default = 0.1

This value allows the Crash procedure to ignore certain ‘small’ non-zero elements in the constraint matrix
A while searching for a triangular basis. For each column of A, if amax is the largest element in the column,
other non-zeros in that column are ignored if they are less than (or equal to) amax × r.

When r > 0, the basis obtained by the Crash procedure may not be strictly triangular, but it is likely
to be non-singular and almost triangular. The intention is to obtain a starting basis with more column
variables and fewer (arbitrary) slacks. A feasible solution may be reached earlier for some problems. If
r < 0 or r ≥ 1, the default value is used.

Defaults

This special keyword may be used to reset all optional parameters to their default values.

Expand Frequency i Default = 10000

This option is part of an anti-cycling procedure (see Section 10.4) designed to allow progress even on
highly degenerate problems.

For LP problems, the strategy is to force a positive step at every iteration, at the expense of violating the
constraints by a small amount. Suppose that the value of the optional parameter Feasibility Tolerance
is δ. Over a period of i iterations, the feasibility tolerance actually used by E04NKF (i.e., the working
feasibility tolerance) increases from 0.5δ to δ (in steps of 0.5δ/i).

For QP problems, the same procedure is used for iterations in which there is only one superbasic variable.
(Cycling can only occur when the current solution is at a vertex of the feasible region.) Thus, zero steps
are allowed if there is more than one superbasic variable, but otherwise positive steps are enforced.

Increasing the value of i helps reduce the number of slightly infeasible nonbasic basic variables (most of
which are eliminated during the resetting procedure). However, it also diminishes the freedom to choose
a large pivot element (see Pivot Tolerance below).

If i < 0, the default value is used. If i = 0, the value i = 99999999 is used and effectively no anti-cycling
procedure is invoked.

Factorization Frequency i Default = 100

If i > 0, at most i basis changes will occur between factorizations of the basis matrix. For LP problems,
the basis factors are usually updated at every iteration. For QP problems, fewer basis updates will
occur as the solution is approached. The number of iterations between basis factorizations will therefore
increase. During these iterations a test is made regularly according to the value of Check Frequency
(see above) to ensure that the linear constraints Ax − s = 0 are satisfied. If necessary, the basis will be
refactorized before the limit of i updates is reached. If i ≤ 0, the default value is used.

Feasibility Tolerance r Default = max(10−6,
√
ε)

If r ≥ ε, r defines the maximum acceptable absolute violation in each constraint at a ‘feasible’ point
(including slack variables). For example, if the variables and the coefficients in the linear constraints are
of order unity, and the latter are correct to about 5 decimal digits, it would be appropriate to specify r
as 10−5. If r < ε, the default value is used.

E04NKF attempts to find a feasible solution before optimizing the objective function. If the sum of
infeasibilities cannot be reduced to zero, the problem is assumed to be infeasible. Let Sinf be the
corresponding sum of infeasibilities. If Sinf is quite small, it may be appropriate to raise r by a factor
of 10 or 100. Otherwise, some error in the data should be suspected. Note that the routine does not
attempt to find the minimum value of Sinf.

If the constraints and variables have been scaled (see Scale Option below), then feasibility is defined in
terms of the scaled problem (since it is more likely to be meaningful).

Infinite Bound Size r Default = 1020

If r > 0, r defines the ‘infinite’ bound bigbnd in the definition of the problem constraints. Any upper
bound greater than or equal to bigbnd will be regarded as plus infinity (and similarly any lower bound
less than or equal to −bigbnd will be regarded as minus infinity). If r ≤ 0, the default value is used.

E04NKF.22 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04NKF

Infinite Step Size r Default = max(bigbnd, 1020)

If r > 0, r specifies the magnitude of the change in variables that will be considered a step to an unbounded
solution. (Note that an unbounded solution can occur only when the Hessian is not positive-definite.) If
the change in x during an iteration would exceed the value of r, the objective function is considered to
be unbounded below in the feasible region. If r ≤ 0, the default value is used.

Iteration Limit i Default = max(50, 5(n+m))
Iters

Itns

The value of i specifies the maximum number of iterations allowed before termination. Setting i = 0 and
Print Level > 0 means that the workspace needed to start solving the problem will be computed and
printed, but no iterations will be performed. If i < 0, the default value is used.

List Default = List

Nolist

Normally each optional parameter specification is printed as it is supplied. Nolistmay be used to suppress
the printing and List may be used to restore printing.

LU Factor Tolerance r1 Default = 100.0
LU Update Tolerance r2 Default = 10.0

The values of r1 and r2 affect the stability and sparsity of the basis factorization B = LU , during
refactorization and updates respectively. The lower triangular matrix L is a product of matrices of the
form (

1
µ 1

)

where the multipliers µ will satisfy |µ| ≤ ri. The default values of r1 and r2 usually strike a good
compromise between stability and sparsity. For large and relatively dense problems, setting r1 and r2
to 25 (say) may give a marked improvement in sparsity without impairing stability to a serious degree.
Note that for band matrices it may be necessary to set r1 in the range 1 ≤ r1 < 2 in order to achieve
stability. If r1 < 1 or r2 < 1, the default value is used.

LU Singularity Tolerance r Default = ε0.67

If r > 0, r defines the singularity tolerance used to guard against ill-conditioned basis matrices.
Whenever the basis is refactorized, the diagonal elements of U are tested as follows. If |ujj | ≤ r or
|ujj | < r×max

i
|uij |, the jth column of the basis is replaced by the corresponding slack variable. If r ≤ 0,

the default value is used.

Maximize Default = Minimize

Minimize

This option specifies the required direction of the optimization. It applies to both linear and nonlinear
terms (if any) in the objective function. Note that if two problems are the same except that one minimizes
f(x) and the other maximizes −f(x), their solutions will be the same but the signs of the dual variables
πi and the reduced gradients dj (see Section 10.3) will be reversed.

Monitoring File i Default = −1

If i ≥ 0 and Print Level > 0 (see below), monitoring information produced by E04NKF is sent to a file
with logical unit number i. If i < 0 and/or Print Level = 0, the default value is used and hence no
monitoring information is produced.

Optimality Tolerance r Default = max(10−6,
√
ε)

If r ≥ ε, r is used to judge the size of the reduced gradients dj = gj − πTaj . By definition, the reduced
gradients for basic variables are always zero. Optimality is declared if the reduced gradients for any
nonbasic variables at their lower or upper bounds satisfy −r × max(1, ‖ π ‖) ≤ dj ≤ r × max(1, ‖ π ‖),
and if |dj | ≤ r ×max(1, ‖ π ‖) for any superbasic variables. If r < ε, the default value is used.

[NP3390/19/pdf] E04NKF.23

E04NKF E04 – Minimizing or Maximizing a Function

Partial Price i Default = 10

Note that this option does not apply to QP problems.

This option is recommended for large FP or LP problems that have significantly more variables than
constraints (i.e., n � m). It reduces the work required for each pricing operation (i.e., when a nonbasic
variable is selected to enter the basis). If i = 1, all columns of the constraint matrix (A −I) are searched.
If i > 1, A and −I are partitioned to give i roughly equal segments Aj ,Kj, for j = 1, 2, . . . , p (modulo
p). If the previous pricing search was successful on Aj−1,Kj−1, the next search begins on the segments
Aj ,Kj . If a reduced gradient is found that is larger than some dynamic tolerance, the variable with the
largest such reduced gradient (of appropriate sign) is selected to enter the basis. If nothing is found, the
search continues on the next segments Aj+1,Kj+1, and so on. If i ≤ 0, the default value is used.

Pivot Tolerance r Default = ε0.67

If r > 0, r is used to prevent columns entering the basis if they would cause the basis to become almost
singular. If r ≤ 0, the default value is used.

Print Level i Default = 10

The value of i controls the amount of printout produced by E04NKF, as indicated below. A detailed
description of the printed output is given in Section 8.1 (summary output at each iteration and the final
solution) and Section 12 (monitoring information at each iteration). Note that the summary output will
not exceed 80 characters per line and that the monitoring information will not exceed 120 characters per
line. If i < 0, the default value is used.

The following printout is sent to the current advisory message unit (as defined by X04ABF):

i Output
0 No output.
1 The final solution only.
5 One line of summary output for each iteration (no printout of the final solution).

≥ 10 The final solution and one line of summary output for each iteration.

The following printout is sent to the logical unit number defined by the optional parameter Monitoring
File (see above):

i Output
0 No output.
1 The final solution only.
5 One long line of output for each iteration (no printout of the final solution).

≥ 10 The final solution and one long line of output for each iteration.
≥ 20 The final solution, one long line of output for each iteration, matrix statistics (initial status of

rows and columns, number of elements, density, biggest and smallest elements, etc.), details
of the scale factors resulting from the scaling procedure (if Scale Option = 1 or 2; see below),
basis factorization statistics and details of the initial basis resulting from the Crash procedure
(if START = ’C’; see Section 5).

If Print Level > 0 and the unit number defined by Monitoring File is the same as that defined by
X04ABF, then the summary output is suppressed.

Scale Option i Default = 2

This option enables you to scale the variables and constraints using an iterative procedure due to Fourer
(see [8]), which attempts to compute row scales ri and column scales cj such that the scaled matrix
coefficients āij = aij × (cj/ri) are as close as possible to unity. This may improve the overall efficiency of
the routine on some problems. (The lower and upper bounds on the variables and slacks for the scaled
problem are redefined as l̄j = lj/cj and ūj = uj/cj respectively, where cj ≡ rj−n if j > n.)

If i = 0, no scaling is performed. If i = 1, all rows and columns of the constraint matrix A are scaled. If
i = 2, an additional scaling is performed that may be helpful when the solution x is large; it takes into
account columns of (A − I) that are fixed or have positive lower bounds or negative upper bounds. If i
< 0 or i > 2, the default value is used.

E04NKF.24 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04NKF

Scale Tolerance r Default = 0.9

Note that this option does not apply when Scale Option = 0 (see above).

If 0 < r < 1, r is used to control the number of scaling passes to be made through the constraint matrix
A. At least 3 (and at most 10) passes will be made. More precisely, let ap denote the largest column
ratio (i.e.,

′biggest′ element
′smallest′ element in some sense) after the pth scaling pass through A. The scaling procedure is

terminated if ap ≥ ap−1 × r for some p ≥ 3. Thus, increasing the value of r from 0.9 to 0.99 (say) will
probably increase the number of passes through A. If r ≤ 0 or r ≥ 1, the default value is used.

Superbasics Limit i Default = min(nH + 1, n)

Note that this option does not apply to FP or LP problems.

The value of i specifies ‘how nonlinear’ you expect the QP problem to be. If i ≤ 0, the default value is
used.

12 Description of Monitoring Information

This section describes the intermediate printout and final printout which constitutes the monitoring
information produced by E04NKF. (See also the description of the optional parameters Monitoring File
and Print Level in Section 11.2). The level of printed output can be controlled by the user.

When Print Level = 5 or ≥ 10 andMonitoring File ≥ 0, the following line of intermediate printout (< 120
characters) is produced at every iteration on the unit number specified byMonitoring File. Unless stated
otherwise, the values of the quantities printed are those in effect on completion of the given iteration.

Itn is the iteration count.
pp is the partial price indicator. The variable selected by the last pricing operation

came from the pp-th partition of A and −I. Note that pp is reset to zero whenever
the basis is refactorized.

dj is the value of the reduced gradient (or reduced cost) for the variable selected by
the pricing operation at the start of the current iteration.

+S is the variable selected by the pricing operation to be added to the superbasic set.
-S is the variable chosen to leave the superbasic set.
-B is the variable removed from the basis (if any) to become nonbasic.
-B is the variable chosen to leave the set of basics (if any) in a special basic ↔

superbasic swap. The entry under -S has become basic if this entry is non-zero,
and nonbasic otherwise. The swap is done to ensure that there are no superbasic
slacks.

Step is the value of the step length α taken along the computed search direction p. The
variables x have been changed to x+ αp. If a variable is made superbasic during
the current iteration (i.e., +S is positive), Step will be the step to the nearest
bound. During the optimality phase, the step can be greater than unity only if
the reduced Hessian is not positive-definite.

Pivot is the rth element of a vector y satisfying By = aq whenever aq (the qth column
of the constraint matrix (A − I)) replaces the rth column of the basis matrix B.
Wherever possible, Step is chosen so as to avoid extremely small values of Pivot
(since they may cause the basis to be nearly singular). In extreme cases, it may be
necessary to increase the value of the optional parameter Pivot Tolerance (default
value = ε0.67, where ε is the machine precision; see Section 11.2) to exclude
very small elements of y from consideration during the computation of Step.

Ninf is the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.

Sinf/Objective is the value of the current objective function. If x is not feasible, Sinf gives
the sum of the magnitudes of constraint violations. If x is feasible, Objective is
the value of the objective function. The output line for the final iteration of the
feasibility phase (i.e., the first iteration for which Ninf is zero) will give the value
of the true objective at the first feasible point. During the optimality phase, the
value of the objective function will be non-increasing. During the feasibility phase,
the number of constraint infeasibilities will not increase until either a feasible point
is found, or the optimality of the multipliers implies that no feasible point exists.

[NP3390/19/pdf] E04NKF.25

E04NKF E04 – Minimizing or Maximizing a Function

L is the number of non-zeros in the basis factor L. Immediately after a basis
factorization B = LU , this is lenL, the number of subdiagonal elements in the
columns of a lower triangular matrix. Further non-zeros are added to L when
various columns of B are later replaced. (Thus, L increases monotonically.)

U is the number of non-zeros in the basis factor U . Immediately after a basis
factorization, this is lenU, the number of diagonal and superdiagonal elements
in the rows of an upper triangular matrix. As columns of B are replaced, the
matrix U is maintained explicitly (in sparse form). The value of U may fluctuate
up or down; in general, it will tend to increase.

Ncp is the number of compressions required to recover workspace in the data structure
for U . This includes the number of compressions needed during the previous basis
factorization. Normally, Ncp should increase very slowly. If it does not, increase
LENZ by at least L + U and rerun E04NKF (possibly using START = ’W’; see
Section 5).

Norm rg is ‖dS‖, the Euclidean norm of the reduced gradient (see Section 10.3) at the
start of the current iteration. During the optimality phase, this norm will be
approximately zero after a unit step. For FP and LP problems, Norm rg is not
printed.

Ns is the current number of superbasic variables. For FP and LP problems, Ns is not
printed.

Cond Hz is a lower bound on the condition number of the reduced Hessian (see Section
10.2). The larger this number, the more difficult the problem. For FP and LP
problems, Cond Hz is not printed.

When Print Level ≥ 20 and Monitoring File ≥ 0, the following lines of intermediate printout (< 120
characters) are produced on the unit number specified by Monitoring File whenever the matrix B or
BS = (B S)T is factorized. Gaussian elimination is used to compute an LU factorization of B or BS ,
where PLPT is a lower triangular matrix and PUQ is an upper triangular matrix for some permutation
matrices P and Q. The factorization is stabilized in the manner described under the optional parameter
LU Factor Tolerance (default value = 100.0; see Section 11.2).

Factorize is the factorization count.
Demand is a code giving the reason for the present factorization as follows:

Code Meaning

0 First LU factorization.

1 Number of updates reached the value of the optional parameter
Factorization Frequency (default value = 100; see Section 11.2).

2 Excessive non-zeros in updated factors.

7 Not enough storage to update factors.

10 Row residuals too large (see the description for the optional parameter
Check Frequency in Section 11.2).

11 Ill-conditioning has caused inconsistent results.

Iteration is the iteration count.
Nonlinear is the number of nonlinear variables in B (not printed if BS is factorized).
Linear is the number of linear variables in B (not printed if BS is factorized).
Slacks is the number of slack variables in B (not printed if BS is factorized).
Elems is the number of non-zeros in B (not printed if BS is factorized).
Density is the percentage non-zero density of B (not printed if BS is factorized). More

precisely, Density = 100× Elems/(Nonlinear + Linear + Slacks)2.
Compressns is the number of times the data structure holding the partially factorized matrix

needed to be compressed, in order to recover unused workspace. Ideally, it should
be zero. If it is more than 3 or 4, increase LENIZ and LENZ and rerun E04NKF
(possibly using START = ’W’; see Section 5).

E04NKF.26 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04NKF

Merit is the average Markowitz merit count for the elements chosen to be the diagonals
of PUQ. Each merit count is defined to be (c − 1)(r − 1), where c and r are the
number of non-zeros in the column and row containing the element at the time it
is selected to be the next diagonal. Merit is the average of m such quantities. It
gives an indication of how much work was required to preserve sparsity during the
factorization.

lenL is the number of non-zeros in L.
lenU is the number of non-zeros in U .
Increase is the percentage increase in the number of non-zeros in L and U relative to the

number of non-zeros in B. More precisely, Increase = 100 × (lenL + lenU −
Elems)/Elems.

m is the number of rows in the problem. Note that m = Ut + Lt + bp.
Ut is the number of triangular rows of B at the top of U .
d1 is the number of columns remaining when the density of the basis matrix being

factorized reached 0.3.
Lmax is the maximum subdiagonal element in the columns of L (not printed if BS is

factorized). This will not exceed the value of the LU Factor Tolerance.
Bmax is the maximum non-zero element in B (not printed if BS is factorized).
BSmax is the maximum non-zero element in BS (not printed if B is factorized).

Umax is the maximum non-zero element in U , excluding elements of B that remain in
U unchanged. (For example, if a slack variable is in the basis, the corresponding
row of B will become a row of U without modification. Elements in such rows will
not contribute to Umax. If the basis is strictly triangular, none of the elements of
B will contribute, and Umax will be zero.)
Ideally, Umax should not be significantly larger than Bmax. If it is several orders of
magnitude larger, it may be advisable to reset the LU Factor Tolerance to a value
near 1.0.
Umax is not printed if BS is factorized.

Umin is the magnitude of the smallest diagonal element of PUQ (not printed if BS is
factorized).

Growth is the value of the ratio Umax/Bmax, which should not be too large.
Providing Lmax is not large (say < 10.0), the ratio max(Bmax, Umax)/Umin is an
estimate of the condition number of B. If this number is extremely large, the
basis is nearly singular and some numerical difficulties could occur in subsequent
computations. (However, an effort is made to avoid near singularity by using
slacks to replace columns of B that would have made Umin extremely small, and
the modified basis is refactorized.)
Growth is not printed if BS is factorized.

Lt is the number of triangular columns of B at the beginning of L.
bp is the size of the ‘bump’ or block to be factorized nontrivially after the triangular

rows and columns have been removed.
d2 is the number of columns remaining when the density of the basis matrix being

factorized reached 0.6.

When Print Level ≥ 20 and Monitoring File ≥ 0, the following lines of intermediate printout (< 80
characters) are produced on the unit number specified by Monitoring File whenever START = ’C’ (see
Section 5). They refer to the number of columns selected by the Crash procedure during each of several
passes through A, whilst searching for a triangular basis matrix.

Slacks is the number of slacks selected initially.
Free cols is the number of free columns in the basis.
Preferred is the number of ‘preferred’ columns in the basis (i.e., ISTATE(j) = 3 for some

j ≤ n).
Unit is the number of unit columns in the basis.
Double is the number of double columns in the basis.
Triangle is the number of triangular columns in the basis.
Pad is the number of slacks used to pad the basis.

When Print Level ≥ 20 and Monitoring File ≥ 0, the following lines of intermediate printout (< 80

[NP3390/19/pdf] E04NKF.27

E04NKF E04 – Minimizing or Maximizing a Function

characters) are produced on the unit number specified by Monitoring File. They refer to the elements of
the NAMES array (see Section 5).

Name gives the name for the problem (blank if none).
Status gives the exit status for the problem (i.e., Optimal soln, Weak soln, Unbounded,

Infeasible, Excess itns, Error condn or Feasble soln) followed by details of
the direction of the optimization (i.e., (Min) or (Max)).

Objective gives the name of the free row for the problem (blank if none).
RHS gives the name of the constraint right-hand side for the problem (blank if none).
Ranges gives the name of the ranges for the problem (blank if none).
Bounds gives the name of the bounds for the problem (blank if none).

When Print Level = 1 or ≥ 10 and Monitoring File ≥ 0, the following lines of final printout (< 120
characters) are produced on the unit number specified by Monitoring File.

Let aj denote the jth column of A, for j = 1, 2, . . . , n. The following describes the printout for each
column (or variable). A full stop (.) is printed for any numerical value that is zero.

Number is the column number j. (This is used internally to refer to xj in the intermediate
output.)

Column gives the name of xj .
State gives the state of xj (LL if nonbasic on its lower bound, UL if nonbasic on its upper

bound, EQ if nonbasic and fixed, FR if nonbasic and strictly between its bounds,
BS if basic and SBS if superbasic).

A key is sometimes printed before State to give some additional information about
the state of xj . Note that unless the optional paramter Scale Option = 0 (default
value = 2; see Section 11.2) is specified, the tests for assigning a key are applied
to the variables of the scaled problem.

A Alternative optimum possible. xj is nonbasic, but its reduced gradient is
essentially zero. This means that if xj were allowed to start moving away
from its bound, there would be no change in the value of the objective
function. The values of the basic and superbasic variables might change,
giving a genuine alternative solution. However, if there are any degenerate
variables (labelled D), the actual change might prove to be zero, since one
of them could encounter a bound immediately. In either case, the values
of the Lagrange multipliers might also change.

D Degenerate. xj is basic or superbasic, but it is equal to (or very close to)
one of its bounds.

I Infeasible. xj is basic or superbasic and is currently violating one of
its bounds by more than the value of the optional parameter Feasibility
Tolerance (default value = max(10−6,

√
ε), where ε is the machine

precision; see Section 11.2).
N Not precisely optimal. xj is nonbasic or superbasic. If the value of

the reduced gradient for xj exceeds the value of the optional parameter
Optimality Tolerance (default value = max(10−6,

√
ε)), the solution would

not be declared optimal because the reduced gradient for xj would not be
considered negligible.

Activity is the value of xj at the final iterate.
Obj Gradient is the value of gj at the final iterate. For FP problems, gj is set to zero.
Lower Bound is the lower bound specified for xj . None indicates that BL(j) ≤−bigbnd.
Upper Bound is the upper bound specified for xj . None indicates that BU(j) ≥ bigbnd.
Reduced Gradnt is the value of dj at the final iterate (see Section 10.3). For FP problems, dj is set

to zero.
m + j is the value of m+ j.

Let vi denote the ith row of A, for i = 1, 2, . . . ,m. The following describes the printout for each row (or
constraint). A full stop (.) is printed for any numerical value that is zero.

E04NKF.28 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04NKF

Number is the value of n + i. (This is used internally to refer to si in the intermediate
output.)

Row gives the name of vi.
State gives the state of vi (LL if active on its lower bound, UL if active on its upper

bound, EQ if active and fixed, BS if inactive when si is basic and SBS if inactive
when si is superbasic).

A key is sometimes printed before State to give some additional information about
the state of si. Note that unless the optional parameter Scale Option = 0 (default
value = 2; see Section 11.2) is specified, the tests for assigning a key are applied
to the variables of the scaled problem.

A Alternative optimum possible. si is nonbasic, but its reduced gradient is
essentially zero. This means that if si were allowed to start moving away
from its bound, there would be no change in the value of the objective
function. The values of the basic and superbasic variables might change,
giving a genuine alternative solution. However, if there are any degenerate
variables (labelled D), the actual change might prove to be zero, since one
of them could encounter a bound immediately. In either case, the values
of the dual variables (or Lagrange multipliers) might also change.

D Degenerate. si is basic or superbasic, but it is equal to (or very close to)
one of its bounds.

I Infeasible. si is basic or superbasic and is currently violating one of
its bounds by more than the value of the optional parameter Feasibility
Tolerance (default value = 10−6; see Section 11.2).

N Not precisely optimal. si is nonbasic or superbasic. If the value of
the reduced gradient for si exceeds the value of the optional parameter
Optimality Tolerance (default value = max(10−6,

√
ε)), the solution would

not be declared optimal because the reduced gradient for si would not be
considered negligible.

Activity is the value of vi at the final iterate.
Slack Activity is the value by which vi differs from its nearest bound. (For the free row (if any),

it is set to Activity.)
Lower Bound is the lower bound specified for vi. None indicates that BL(n+ j) ≤ −bigbnd.
Upper Bound is the upper bound specified for vi. None indicates that BU(n+ j) ≥ bigbnd.
Dual Activity is the value of the dual variable πi (the Lagrange multiplier for vi; see Section

10.3). For FP problems, πi is set to zero.
i gives the index i of vi.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

[NP3390/19/pdf] E04NKF.29 (last)

